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Reading Comprehension

Given a passage of text, we want to probe a model’s 
understanding of it via question answering.
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What is the Right Format?

Multiple-Choice

Pros:
● Easy to evaluate (accuracy)

Cons:
● Distractor choices can 

introduce unwanted bias.
● Doesn’t allow model to 

synthesize own answer.

Generation

Pros:
● Allows any question to be 

asked and model to 
generate answer.

● No need for distractors.
Cons:

● Evaluation is hard. 

Span-Selection

Pros:
● Easy to evaluate (F1)

Cons:
● Requires distractor spans.
● Answer must be spans, 

which restricts questions.
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Generation

Pros:
● Allows any question to be 

asked and model to 
generate any answer.

● No need for distractors.
Cons:

● Evaluation is hard.

Generation is the “right” format. 
Flexible and doesn’t require distractors!
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But…Existing Metrics are Insufficient to Handle 
the Nuances of Reading Comprehension
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Example 1: Agnostic to Passage

Passage: With the aid of his daughter, 
Abigail, Barabas recovers his former assets. 
Barabas then uses his daughter’s beauty to pit 
Lodowick and Mathias against each other.

Question: Why did Lodowick and Mathias fight? 
Reference: Over the affection of Abigail
Candidate: For Barabas’s daughter love.

BLEU-1: 0
ROUGE-L: 0
METEOR: 0
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Abigail is Baraba’s 
daughter in 

passage



Example 2: Reliance on Token Overlap

Passage: The strangest thing that has happened 
was when they were singing the Chinese 
National Anthem she was standing in front of 
the TV swaying and singing.

Question: What is probably true?
Reference: They are watching the Olympics
Candidate: The Olympics are watching them

BLEU-1: 0.80
ROUGE-L: 0.40
METEOR: 0.41
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Semantic role is 
swapped but same 

tokens!



Example 3: Oversensitive to length

Passage: … Both doors are heavily soundproofed 
to prevent the accused from hearing what is 
behind each one. … 

Question: What feature do the doors have? 
Reference: soundproofed
Candidate: They are heavily soundproofed to 
prevent the accused from hearing what’s behind 
each one.

BLEU-1: 0.07
ROUGE-L: 0.15
METEOR: 0.17
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Candidate adds 
extra details which 

are correct.
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Train a learned metric to mimic human judgement scores.

14



Collect 
Candidate 
Answers
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MOCHA is a dataset that pairs QA instances 
(passage, question, reference) with candidates and 

associated human judgement scores (1-5).
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Collecting Candidate Answers
Collect candidates from 6 constituent QA datasets:

● NarrativeQA

● MCScript

● CosmosQA

● SocialIQA

● DROP

● Quoref
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MCScript, CosmosQA, & 
SocialIQA were originally 
multiple choice datasets



Collecting Candidate Answers

We generate candidates using:

● Model outputs:
○ Multi-hop Pointer Generator Model

○ GPT-2 Small

○ BERT/NABERT Base

● Backtranslation
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Collecting Candidate Answers

In total, MOCHA contains 40K candidates from 6 constituent datasets.

The 40K candidates are split into train (75%), validation (10%), and test (15%) sets.
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Gathering Human Judgements

Each training instance gets 1 judgement score.

Each validation/test instance gets 3 and are averaged.
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LERC: A Learned Metric for Reading Comprehension
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Experimental Setup

Baselines: 

- BLEU-1, METEOR, ROUGE-L, and BERTScore.
- BERT paraphrase detection model trained on STS-B.

We train LERC in a out-of-dataset fashion: for each constituent dataset 
we evaluate on we hold out that dataset from our training set.
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Pearson Correlation (Test Set)
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Error Analysis (Validation Set)

We take the 40 instances with 
the largest gap between LERC 
and human scores and then 
categorize by error source.
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Evaluating Robustness with Minimal Pairs

Given a (passage, question, 
reference) tuple, create two 
candidates that have high overlap, 
but one of which is much more 
correct. 

200 minimal pairs total.
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Passage: Norman is the supposed son of 
Frenchman deVac...As de Vac dies, he reveals 
Norman is Richard, the king’s son and Edward’s 
brother, who he kidnapped.
Q: Who is the Frenchman de Vac?
Ref: a fencing master who kidnapped Norman

Cand1: a fencing master who kidnapped Richard
Cand2: a fencing master who kidnapped Edward

Score1: 5
Score2: 2



Evaluating Robustness with Minimal Pairs

Given a minimal pair: 

(pass, ques, ref, cand1) 

(pass, ques, ref, cand2)

do metrics assign a higher 
score to the better candidate?
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Evaluating Robustness with Minimal Pairs
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Minimal pairs created to test understanding of variety of  phenomena:

● Coreference
● Hyponymy
● Negation
● Semantic Role
● Syntax
● Word Sense



Results on Minimal Pairs
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Takeaways
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Learned Metric > Engineered Metric (with training data)

LERC is weak on some phenomena (need more targeted training data)
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Landing Page:
allennlp.org/mocha

(Check out the leaderboard and demo!)
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Thanks!

If you want to chat over a mocha👇

Website: anthonywchen.github.io
Email: anthony.chen@uci.edu
Tweeter: @_anthonychen 39
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